核酸外切酶作用于
亲和层析的应用主要是生物大分子的分离、纯化。下面简单介绍一些亲和层析技术用于纯化各种生物大分子的情况。
1.抗原和抗体
利用抗原、抗体之间高特异的亲和力而进行分离的方法又称为免疫亲和层析。
例如将抗原结合于亲和层析基质上,就可以从血清中分离其对应的抗体。在蛋白质工程菌发酵液中所需蛋白质的浓度通常较低,用离子交换、凝胶过滤等方法都难于进行分离,而亲和层析则是一种非常有效的方法。
将所需蛋白质作为抗原,经动物免疫后制备抗体,将抗体与适当基质偶联形成亲和吸附剂,就可以对发酵液中的所需蛋白质进行分离纯化。抗原、抗体间亲和力一般比较强,其解离常数为10 8-10? 12M,所以洗脱时是比较困难的,通常需要较强烈的洗脱条件。可以采取适当的方法如改变抗原、抗体种类或使用类似物等来降低二者的亲和力,以便于洗脱。
另外金黄色葡萄球菌蛋白A(Protein A)能够与免疫球蛋白G(Ig G)结合,可以用于分离各种Ig G。
2.生物素和亲和素
生物素(biotion)和亲和素(avidin)之间具有很强而特异的亲和力,可以用于亲和层析。如用亲和素分离含有生物素的蛋白等。生物素和亲和素的亲和力很强,其解离常数为10 15M,洗脱通常需要强类的变性条件,可以选择biotion的类似物,如2-iminobiotin、diiminobiotin等降低与avidin的亲和力,这样可以在较温和的条件下将其从avidin上洗脱下来。
另外,可以利用生物素和亲和素间的高亲和力,将某种配体固定在基质上。例如将生物素酰化的胰岛素与以亲和素为配体的琼脂糖作用,通过生物素与亲和素的亲和力,胰岛素就被固定在琼脂糖上,可以用于亲和层析分离与胰岛素有亲和力的生物大分子物质。这种非共价的间接结合比直接将胰岛素共价结合与CNBr活化的琼脂糖上更稳定。很多种生物大分子可以用生物素标记试剂(如生物素与NHS生成的酯)作用结合上生物素,并且不改变其生物活性,这使得生物素和亲和素在亲和层析分离中有更广泛的用途。
3.维生素、激素和结合转运蛋白
通常结合蛋白含量很低,如1000升人血浆中只含有20毫克Vit -7-10-B12结合蛋白,用通常的层析技术难于分离。利用维生素或激素与其结合蛋白具有强而特异的亲和力(解离常数为10 16M)而进行亲和层析则可以获得较好的分离效果。由于亲和力较强,所以洗脱时可能需要较强烈的条件,另外可以加入适量的配体进行特异性洗脱。
4.激素和受体蛋白
激素的受体蛋白属于膜蛋白,利用去污剂溶解后的膜蛋白往往具有相似的物理性质,难于用通常的层析技术分离。但去污剂溶解通常不影响受体蛋白与其对应激素的结合。所以利用激素和受体蛋白间的高亲和力(10 6-10? 12M)而进行亲和层析是分离受体蛋白的重要方法。目前已经用亲和层析方法纯化出了大量的受体蛋白,如乙酰胆碱、肾上腺素、生长激素、吗啡、胰岛素等等多种激素的受体。
5.凝集素和糖蛋白
-D-甲基葡萄糖苷洗脱。同样,用适当的糖蛋白或单糖、多糖作为配体也可以分离各种凝集素。a-D-甲基甘露糖苷或a-D-吡喃葡萄糖苷的糖蛋白,麦胚凝集素可以特异的与N-乙酰氨基葡萄糖或N-乙酰神经氨酸结合,可以用于血型糖蛋白A、红细胞膜凝集素受体等的分离。洗脱时只需用相应的单糖或类似物,就可以将待分离的糖蛋白洗脱下来。
如洗脱伴刀豆球蛋白A吸附的蛋白可以用a-D-吡喃甘露糖苷或a凝集素是一类具有多种特性的糖蛋白,几乎都是从植物中提取。它们能识别特殊的糖,因此可以用于分离多糖、各种糖蛋白、免疫球蛋白、血清蛋白甚至完整的细胞。用凝集素作为配体的亲和层析是分离糖蛋白的主要方法。
6.辅酶
核苷酸及其许多衍生物、各种维生素等是多种酶的辅酶或辅助因子,利用它们与对应酶的亲和力可以对多种酶类进行分离纯化。例如固定的各种腺嘌呤核苷酸辅酶,包括AMP、cAMP、ADP、ATP、CoA、NAD+、NADP+等等应用很广泛,可以用于分离各种激酶和脱氢酶。
7.多核苷酸和核酸
利用poly-U作为配体可以用于分离mRNA以及各种poly-U结合蛋白。poly-A可以用于分离各种RNA、RNA聚合酶以及其它poly-A结合蛋白。以DNA作为配体可以用于分离各种DNA结合蛋白、DNA聚合酶、RNA聚合酶、核酸外切酶等多种酶类。
8.氨基酸
固定化氨基酸是多用途的介质,通过氨基酸与其互补蛋白间的亲和力,或者通过氨基酸的疏水性等性质,可以用于多种蛋白质、酶的分离纯化。例如L-精氨酸可以用于分离羧肽酶,L-赖氨酸则广泛的应用于分离各种rRNA。
9.染料配体
结合在蓝色葡聚糖中的蓝色染料Cibacron Blue F3GA是一种多芳香环的磺化物。由于它具有与NAD+相似的空间结构,所以它与各种激酶、脱氢酶、血清清蛋白、DNA聚合酶等具有亲和力,可以用于亲和层析分离。另外较常用的还有Procion Red HE3B等。染料作为配体吸附容量高、可以多次重复使用。但它有一定的阳离子交换作用,使用时应适当提高缓冲液离子强度来减少非特异性吸附。
10.分离病毒、细胞
利用配体与病毒、细胞表面受体的相互作用,亲和层析也可以用于病毒和细胞的分离。利用凝集素、抗原、抗体等作为配体都可以用于细胞的分离。例如各种凝集素可以用于分离红细胞以及各种淋巴细胞,胰岛素可以用于分离脂肪细胞等。由于细胞体积大、非特异性吸附强,所以亲和层析时要注意选择合适的基质。目前已有特别的基质如Pharmacia公司生产的Sepharose 6MB,颗粒大、非特异性吸附小,适合用于细胞亲和层析。
11.金属螯合色谱
金属螯合色谱以及后面介绍的共价色谱、疏水色谱是一些特殊的亲和层析技术。金属螯合色谱通常使用亚氨二乙酸(IDA)等螯合剂,它能与Cu2+、Zn2+、Fe2+等作用,生成带有多个配位基的金属螯合物,可以用于生物分子尤其是对重金属有较强亲和力的蛋白质的分离纯化。例如Cu2+-IDA配体可以用于分离带精氨酸的蛋白质。
12.共价色谱
共价色谱与常规的亲和色谱方法不同之处在于它是利用亲和吸附剂与待分离的蛋白质的共价结合而将其吸附,而后用适当的处理方法将共价键打开而将蛋白释放出来。例如活化的巯基-Sepharose、巯丙基-Sepharose等活化基质可以直接与含巯基的蛋白质通过二硫键共价结合而将其吸附在基质上,通过适当的洗脱液如半胱氨酸,巯基乙醇等还原二硫键即可将蛋白质洗脱下来。共价色谱结合和洗脱条件一般都很温和,可以多次重复使用。
核酸外切酶作用于什么
二、真核生物 一核糖体RNA:基因拷贝数多,在几十到几千之间。
基因成簇排列在一起,由RNA聚合酶I转录生成一个较长的前体,哺乳动物为45S。核仁是rRNA合成与核糖体亚基生物合成的场所。RNA酶III等核酸内切酶在加工中起重要作用。5SRNA基因也是成簇排列的,由RNA聚合酶III转录,经加工参与构成大亚基。核糖体RNA可被甲基化,主要在核苷2’羟基,比原核生物甲基化程度高。多数核糖体RNA没有内含子,有些有内含子但不转录。二转运RNA:由RNA聚合酶III转录,加工与原核相似,但3’端的CCA都是后加的,还有2’-O-甲基核糖。三信使RNA:真核生物编码蛋白质的基因以单个基因为转录单位,但有内含子,需切除。信使RNA的原初转录产物是分子量很大的前体,在核内加工时形成大小不等的中间物,称为核内不均一RNA(hnRNA)。其加工过程包括: 1.5’端加帽子:在转录的早期或转录终止前已经形成。首先从5’端脱去一个磷酸,再与GTP生成5’,5’三磷酸相连的键,最后以S-腺苷甲硫氨酸进行甲基化,形成帽子结构。帽子结构有多种,起识别和稳定作用。2. 3’端加尾:在核内完成。先由RNA酶III在3’端切断,再由多聚腺苷酸聚合酶加尾。尾与通过核膜有关,还可防止核酸外切酶降解。3. 内部甲基化:主要是6-甲基腺嘌呤,在hnRNA中已经存在。可能对前体的加工起识别作用。三、RNA的拼接 一转运RNA的拼接:由酶催化,酶识别共同的二级结构,而不是序列。通常内含子插入到靠近反密码子处,与反密码子配对,取代反密码子环。第一步由内切酶切除插入序列,不需ATP;第二步由RNA连接酶连接,需要ATP。二四膜虫核糖体RNA的拼接:某些四膜虫26S核糖体RNA基因中有一个内含子,其拼接只需一价和二价阳离子及鸟苷酸或鸟苷存在即可自发进行。其实质是磷酸酯的转移反应,鸟苷酸起辅助因子的作用,提供游离3’羟基。三信使RNA:真核生物编码蛋白质的核基因的内含子属于第二类内含子,左端为GT,右端为AG。先在左端切开,产生的5’末端与3’端上游形成5’,2’-磷酸二酯键,构成套索结构。然后内含子右端切开,两个外显子连接起来。通过不同的拼接方式,可形成不同的信使RNA。
核酸内切酶的作用
载体是工具酶
工具酶
基因工程涉及众多的工具酶可粗略的分为限制酶,连接酶,聚合酶,核酸酶和修饰酶五大类。其中,以限制性核酸内切酶和DNA连接酶在分子克隆中的作用最为突出。
外切核酸酶活性
DNA聚合酶是从克隆有emphasis:role=italicPyrococcus:furiosis:emphasisDNA聚合酶基因的大肠杆菌中经诱导表达后分离提取得到的,分子量90:ku,催化5′→3′DNA合成,DNA聚合时的延伸速度0.51:kbmin。emphasis:role=italicPfuemphasis:DNA:聚合酶具有独特的3′→5′外切酶活性,具有纠正错配碱基的功能,无5′→3′外切核酸酶活性。
emphasis:role=italicPfuemphasis酶是目前已发现的所有耐高温DNA聚会酶中出错率最低的,比普通emphasis:role=italicTaqemphasis:DNA:聚合酶热稳定性好,95摄氏度1h仍保持90%以上活性。
核酸外切酶的作用是
加工方式包括:
1、5’端加帽子:
在转录的早期或转录终止前已经形成。首先从5’端脱去一个磷酸,再与GTP生成5’,5’三磷酸相连的键,最后以S-腺苷甲硫氨酸进行甲基化,形成帽子结构。帽子结构有多种,起识别和稳定作用。
2、 3’端加尾:
在核内完成。先由RNA酶III在3’端切断,再由多聚腺苷酸聚合酶加尾。尾与通过核膜有关,还可防止核酸外切酶降解。
3、 内部甲基化:
主要是6-甲基腺嘌呤,在hnRNA中已经存在。可能对前体的加工起识别作用。
核酸外切酶作用于核酸的什么键
1、形成5’-端帽子结构;(真核生物的mrna前体和绝大多数的成熟mrna的5’-端,都含有7-甲基鸟苷为末端的帽子结构,帽子是由gtp和前体mrna5’-端三磷酸核苷酸缩合反应的产物。)
2、形成3’-端的多聚核苷酸,即polya序列,polya序列一般长度因mrna的种类而不同,一般为40~200nt。
3、除了加冒和加尾外,某些mrna也有少量的核苷酸被修饰。如某些腺嘌呤的c6被甲基化修饰。
4、基因的拼接。即切掉内含子,拼接外显子
核酸外切酶作用于核酸的
原理:Gibson assembly是一种one step, one pot的快速基因组装方法。它只需要将基因片段和需要的三种酶混合在同一个管内在50°C下培养15-60 min就可以得到组装好的DNA。
装配原理基于DNA片段间的重叠区域,过程依赖于三种酶:DNA 外切酶(T5 exonuclease), 高保真DNA聚合酶。(Phusion polymerase)和耐热DNA连接酶(Taq DNA ligase)的共同作用。首先,T5 核酸外切酶消化DNA片段的链方向是从5’到3’. 每个DNA片段分别形成一个单链的突出部分,由于着这两个相邻的突出片段有一部分具有同源性能够互补,所以DNA片段退火,互补的序列重新配对连接。然后,在空缺的部分DNA聚合酶以另一条DNA单链为模板,沿3′ 方向将对应的脱氧核苷酸连接到单链上,填补缺口。
核酸外切酶与核酸内切酶的不同
故名思议,内切,就是核酸酶从核苷酸链如DNA链中间(即内部)切开,这样的核酸酶就是内切核酸酶,
外切,作用于核酸链的两端(几个碱基或者一小段),就是核酸酶从与核酸链相互作用,如在DNA复制过程中,从DNA聚合酶添加dNTP的一段切去几个或者一小段核苷酸,这样的酶就叫外切核酸酶,有5‘-3’和3‘-5’两个方向的外切核酸酶两种。
为了使楼主便于理解两者作用和关系,
我举个例子:在DNA修复过程中,一般都是先内切核酸梅作用,断裂附近含有损伤的碱基序列,再是外切核算酶作用切除一小段含有损伤的核苷酸序列。
核酸外切酶作用于哪些细胞
两者同属核酸酶,只是切割核酸的方式不一样而已。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核苷酸链中间开始水解核酸的酶称为核酸内切酶。而能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)。